Cross-validation analysis for genetic evaluation models for ranking in endurance horses.
نویسندگان
چکیده
Ranking trait was used as a selection criterion for competition horses to estimate racing performance. In the literature the most common approaches to estimate breeding values are the linear or threshold statistical models. However, recent studies have shown that a Thurstonian approach was able to fix the race effect (competitive level of the horses that participate in the same race), thus suggesting a better prediction accuracy of breeding values for ranking trait. The aim of this study was to compare the predictability of linear, threshold and Thurstonian approaches for genetic evaluation of ranking in endurance horses. For this purpose, eight genetic models were used for each approach with different combinations of random effects: rider, rider-horse interaction and environmental permanent effect. All genetic models included gender, age and race as systematic effects. The database that was used contained 4065 ranking records from 966 horses and that for the pedigree contained 8733 animals (47% Arabian horses), with an estimated heritability around 0.10 for the ranking trait. The prediction ability of the models for racing performance was evaluated using a cross-validation approach. The average correlation between real and predicted performances across genetic models was around 0.25 for threshold, 0.58 for linear and 0.60 for Thurstonian approaches. Although no significant differences were found between models within approaches, the best genetic model included: the rider and rider-horse random effects for threshold, only rider and environmental permanent effects for linear approach and all random effects for Thurstonian approach. The absolute correlations of predicted breeding values among models were higher between threshold and Thurstonian: 0.90, 0.91 and 0.88 for all animals, top 20% and top 5% best animals. For rank correlations these figures were 0.85, 0.84 and 0.86. The lower values were those between linear and threshold approaches (0.65, 0.62 and 0.51). In conclusion, the Thurstonian approach is recommended for the routine genetic evaluations for ranking in endurance horses.
منابع مشابه
A Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach
Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...
متن کاملChoosing weights for a complete ranking of DMUs in DEA and cross-evaluation
Conventional data envelopment analysis (DEA) assists decision makers in distinguishing between efficient and inefficient decision making units (DMUs) in a homogeneous group. However, DEA does not provide more information about the efficient DMUs. One of the interesting research subjects is to discriminate between efficient DMUs. The aim of this paper is ranking all efficient (extreme and non-ex...
متن کاملObtaining a Unique Solution for the Cross Efficiency by Using the Lexicographic method
Cross efficiency is a method with the idea of peer evaluation instead of self-evaluation, and is used for evaluation and ranking Decision Making Units (DMUs) in Data Envelopment Analysis (DEA). Unlike most existing DEA ranking models which can only rank a subset of DMUs, for example non-efficient or extreme efficient DMUs, cross efficiency can rank all DMUs, even non-extreme ones. However, sinc...
متن کاملA New Goal programming approach for cross efficiency evaluation
Cross efficiency evaluation was developed as an extension of DEA. But the traditional DEA models usually have alternative optimal solutions and, as a result, cross efficiency scores may not be unique. It is recommended that without changing the DEA efficiency scores, the secondary goal should be introduced for optimization of the inputs/outputs weights. Several reports evaluated the perfo...
متن کاملQSAR models to predict physico-chemical Properties of some barbiturate derivatives using molecular descriptors and genetic algorithm- multiple linear regressions
In this study the relationship between choosing appropriate descriptors by genetic algorithm to the Polarizability (POL), Molar Refractivity (MR) and Octanol/water Partition Coefficient (LogP) of barbiturates is studied. The chemical structures of the molecules were optimized using ab initio 6-31G basis set method and Polak-Ribiere algorithm with conjugated gradient within HyperChem 8.0 environ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Animal : an international journal of animal bioscience
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2018